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The variation of the intensity of diffuse peaks with scattering angle, 20s, in neutron diffraction is in- 
vestigated analytically. It is found that the intensity of a diffuse peak relative to a Bragg peak for a 
polycrystalline sample is much larger than for a single crystal. However, the diffuse intensity drops off 
much more rapidly with 20s in the polycrystalline case than in the single-crystal case. If the resolution 
of the instrument is 'sharp' in comparison with the extent of the diffuse scattering in reciprocal space, 
it is found that there is almost no variation of the intensity from one Brillouin zone to the next in a 
single-crystal experiment. These results are applied to the interpretation of an experiment on a Cu-Mn 
alloy. 

Introduction 

The main purpose of this work is to investigate in 
detail the dependence of the observed intensity on the 
scattering angle, 20s, for elastic diffuse peaks, such as 
those due to short-range atomic ordering. The varia- 
tion of the intensity of elastic scattering with 20s in a 
two-crystal neutron-diffraction experiment is generally 
represented by a term known as the Lorentz factor.* 
This factor is well known for a few special cases, such 
as the measurement  of  the integrated intensity of a 
Bragg reflection, in which it takes on a particularly 
simple functional form. In general, however, the 
Lorentz factor is a complicated function, depending 
upon both the density of scattering power in reciprocal 
space and the instrumental  resolution. We shall thus 
wish to calculate an expression for the observed 
intensity of a diffuse peak. We shall do this for both 
the single-crystal and polycrystal cases. 

In order to put the diffuse scattering on an absolute 
scale, it is most convenient to obtain a normalizat ion 
with the Bragg peaks. The way in which this should 
be done is quite different for experiments on single 
crystals and for polycrystals, and appears not to be 
generally appreciated. Thus expressions for the inten- 
sities of  Bragg peaks for both these cases will also be 
derived. 

All together we shall consider four different cases: 

* We are not concerned here with the possible variation of 
intensity with scattering angle due to a form factor or a temper- 
ature factor, both of which are assumed part of the structure 
factor. 

(1) single-crystal diffuse peaks, (2) polycrystal diffuse 
peaks, (3) single-crystal Bragg peaks and (4) polycrystal 
Bragg peaks. 

The experimental arrangement is shown in Fig. 1 
and is assumed to be the same in all cases. Therefore, 
a direct comparison of the measured intensity in each 
case with that of  any other case can be readily made. 
We shall show, among other things, that for case 1 
the Lorentz factor, when the resolution is sharp, 
becomes 

L~=l, (1) 

(that is, there is no variation at all of the intensity with 
scattering angle). For case 2, again for sharp resolution, 
we shall find 

1 
L2= sin 2 0s" (2) 

For case 3, for the integrated intensity, when the 
detector coll imation is relaxed, the Lorentz factor is 
given by 

1 
L,~ = sin 20s" (3) 

For case 4, again for the integrated intensity, but 
with no restrictions on the detector collimation, we 
shall find 

I 
L4= sin 0~ sin 20~," (4) 

These results for cases 3 and 4 are well known expres- 
sions for the Lorentz factor (International Tables for 
X-ray Crystallography, 1959). 
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As an example of the application of the results 
obtained here, an investigation of the diffuse peaks due 
to short-range order in Cu-25 at.% Mn will be dis- 
cussed. It will be shown how the knowledge of the 
Lorentz factor for a single-crystal diffuse peak allowed 
the separation of nuclear and magnetic contributions 
to the diffuse peak. 

While our main purpose in this paper is to discuss 
the Lorentz factor for aneutron-diffraction experi- 
ment, all of the results are directly applicable to X-ray 
diffraction simply by the inclusion of a polarization 
factor in the expressions for the intensities. 

The resolution function 

The intensity of elastic scattering in a two-crystal 
neutron-diffraction experiment is given by 

where Q0 is the most probable wave-vector change of 
the incident neutrons, [da/df2(Q)]r is the total dif- 
ferential cross section of the sample for elastic scat- 
tering, R (Q-Q0)  is the resolution function and ~00 is 
the neutron flux incident on the monochromator per 
unit volume in Q space. The resolution function rep- 
resents the probability of the detection of neutrons 
as a function of AQ = Q - Q 0  when the diffractometer 
is set to measure a scattering process corresponding to 
Q0. The form of the resolution function has been given 
by Cooper & Nathans (1968a) when the mosaic dis- 
tribution of the monochromator and the transmission 

Illll 
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Fig. 1. Schematic experimental arrangement for a two-crystal 
neutron spectrometer. 

functions of the collimators are assumed to be 
Gaussian; namely 

R ( Q - Q 0 ) = R 0  exp _ 1  ~ ~ MkzAkQAQ~ (6) 
k = l  l = 1  

where AQI,z,a=AQx, y.z. The axes x, y, and z are 
defined such that AQx is directed along Q0 and AQ~ is 
vertical. The general expressions for the Mkz are given 
by Cooper & Nathans (1968a). In this paper we shall 
assume that the in-pile collimation is relaxed. This is 
not a serious limitation and all of the results presented 
here can readily be extended to the more general case. 
The resulting expressions for the coefficients MR~ and 
R0 are given in Appendix A. 

All the points for which the resolution function has 
a particular value, i.e. the loci of constant probability 
of neutron detection, form an ellipsoid in reciprocal 
space and any path through the ellipsoid is a Gaussian. 
The particular ellipsoid for which R(Q-Qo)=R0/2  is 
called the resolution ellipsoid and is used to charac- 
terize the resolution function. Using the values of the 
instrumental parameters given in Table 1, the hori- 
zontal section of the resolution ellipsoid has been 
calculated for three different settings of the diffractom- 
eter as is shown by the solid lines in Fig. 2. It can be 
seen that the resolution ellipsoid becomes larger with 
increasing scattering vector. In other words neutrons 
scattered such that AQ is large have a higher prob- 
ability of detection as Qo becomes larger. 

Table 1. Definitions and experimental values 
of the resolution parameters 

Name Definition 

al Collimator 1 horizontal angle 
fll Collimator 1 vertical angle 
ct2 Collimator 2 horizontal angle 
t2 Collimator 2 vertical angle 
r/M Mosaic spread of monochromator 
r/sh Horizontal mosaic spread of sample 
r/sv Vertical mosaic spread of sample 
0M Monochromator scattering angle 
0s Sample scattering angle 
a c O S  Os 
b sin 0, 
kt Most probable incident wave vector 
P0 Maximum reflectivity of monochromator 
PI Maximum transmission of collimator 1 
P, Maximum transmission of collimator 2 
a0 Lattice constant of sample 

Experimental 
value 

(o) (rad) 
0-18 0.0032 
0-33 0.0058 
0"28 0"0049 
0.56 0.0098 
0"085 0"0015 
0.25 0-0044 
0"25 0"0044 
17"5 0-306 

variable 
variable 
variable 
5"83 A -1 

m 

3.70 A 
Note: The characteristic angles defined above are chosen such 

that the corresponding transmission functions equal 
exp (-½) times their maximum values. 

Equation (5) can be rewritten in a different form by 
noting that [do-/dK2(Q)]r is the cross section integrated 
over the distribution of reciprocal-lattice vectors in 
the whole sample, i.e. 

[~d~ (Q)] = f d° (Q_K)n(K)d3K (7) 
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where da /d f2 (Q-K)  is the scattering cross section for 
a single grain (or mosaic block), n(K) describes the 
orientational distribution of grains in the sample and 
is normalized such that S n(K)d3K=no, the total 
number of grains in the sample. Equation (5) can then 
be written 

If d° I(Q0)=q~o -d~(Q-K)n(K)R(Q-Qo)d3Kd3 Q , (8) 

which, by a simple transformation of variables, is 
equivalent to 

I(Q°)=q)° ~t~ (Q)R ' (Q-Q°)d3Q (9) 

where 

R ' ( Q -  Q0) = In(K)R(Q-Qo+K)d3K. (10) 

Equation (9) is the form that we shall use in calculating 
the intensities for each of the four cases discussed in 
the introduction. 

We can now write down explicitly the expression for 
R ' ( Q - Q 0 )  for the two types of sample of interest 
here, i.e. a mosaic single crystal and a polycrystal. 
For the mosaic single crystal (whose expressions will 
be denoted by the subscript M), the orientational dis- 
tribution of the mosaic blocks will be assumed to be 
Gaussian about some vector Ko and is given by 

nofi( A gx) 
nM(K)= 2rcr/~r/,1,Ko- q- 

x exp ,_½ r [ AK~ 2 AK= 2 
/ tt  

where A K = K - K o  and it is assumed that the mosaic 
spread is small, fi(AK~) is a delta function and the 
parameters are defined in Table 1. A vector diagram 
representing this situation is shown in Fig. 3(a). 
Assuming that the extent of the resolution function is 
small compared with Qo and performing the integra- 
tion of equation (10) one obtains 

R'M(Q-Q°)=R°exp{ - - }~M£~AQkAQ'  } k , t = ,  (12) 

where 

Ro= noRo . 2 z [(M33Korlso+ 1) 2 2 1)]-,/2 (Mz2Koq~n + (13) 

and 

M 2  kr2 .2  12 "tx oqsh 

M;1 = MI~-  ~-3~-K0Zr/s,, + 1) 

Mx2 (14) M ; 2 -  2 z (M2zKoqsk + 1) 

M22 = Mzz .... 
2 2 (M22Kot~sh q- 1) 

M;3 - M33 
(M33 2 2 l) Koqsv + " 

We see that equation (12) has the same form as 
equation (6). This means that for a single-crystal 
sample the effective resolution function, i.e. the resolu- 
tion function that includes the mosaic spread of the 
sample, can also be characterized by an ellipsoid in 
reciprocal space. This ellipsoid is given by R ~ ( Q - Q 0 )  
= Ro/2. For the particular Cu-Mn single-crystal sample 
used in our experiment the single-crystal resolution 
ellipsoid is shown by the dashed lines in Fig. 2 for three 
settings of the diffractometer and can be directly 
compared with the original resolution ellipsoid. The 
effect on the resolution of the sample mosaic spread is 
to a first approximation simply to broaden the ellipsoid 
in the y and z directions. This is the expected result 
since the mosaic spread increases the extent of the total 
cross section only in the y and z directions, as can be 
seen from equations (7) and (11). 

AQy 

.01 

I%1-, 

~Qx 

m, Qy' IQol=e 

.01 ..- . . . . .  "'-.x. 
. f . f ~ "  

AQ x 

AQy 

/ . I " % 1  
f 

\ .  
. . , . . . .  . . . . " "  

JQo] =3 

N 

~ . . f ' J  

AQ~ 

Fig. 2. The resolution ellipsoid (solid line) and the mosaic 
single-crystal resolution ellipsoid (dashed line) in the xy 

[[plane for three different values of ]Qol=2lk~l sin0,. The 
~.t values of IQol and AQ~,v are in units of (2zr/a0). 
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For a polycrystalline sample (denoted by the sub- 
script P), the distribution function describing the 
orientation of the grains is independent of angle and is 
given by 

ne(K)-  no6(AKx) 
4rcK 2 (15) 

and the integration of equation (10) yields 

noRo 
R ~ ( Q -  Q°) = 2K~I/~z2M33 

x e x p { - ½ ( M l t -  ~,];;--/MZz~ .... AQ~ 1. (16) 

Thus the resolution function for a polycrystalline 
sample varies along only one direction in reciprocal 
space, namely, the direction parallel to Qo. A vector 
diagram for polycrystaUine scattering is given in 
Fig. 3(b). 

Thus we now have expressions for the resolution 
functions for both mono- and polycrystalline samples, 
and simply by specifying the form of the cross section 
in equation (9) we can determine the expressions for 
the intensities. 

(a) 

K I -I 0 

(b) 

Fig. 3. (a) Schematic vector diagram in the horizontal plane of 
reciprocal space showing the scattering process for a mosaic 
single crystal. The shaded areas represent the scattering dis- 
tributions from different mosaic grains and the open ellipse 
is the resolution ellipse. (b) Same as (a) for a polycrystal. 

Diffuse scattering 

For a diffuse peak the cross section can be written as 

da 
dI2 (Q) = A o f ( Q - K 0 )  (17) 

w h e r e f ( Q - K 0 )  is the distribution of diffuse scattering 
power about some wave vector K0 in the grain at the 
center of the mosaic distribution and is normalized 
such that S f (Q-K0)d3Q= 1. A0 is given by 

Ao = (2z03f0 vo Irl2/v~, (18) 

where v o is the average volume of a mosaic grain, vc is 
the volume of a unit cell, F is the structure factor and 
fo is a constant factor dependent upon the degree of 
ordering. Although a diffuse peak may have many 
possible shapes, for the ensuing calculations we shall 
assume that the distribution of diffuse scattering is 
Gaussian. However, some of the results we shall ob- 
tain will be independent of the shape and all the results 
can be obtained for other shapes in an analogous 
manner. 

If the diffuse peak is isotropic about K0 we can write 

dcr 
dO ( Q - K ° )  = A°(2x)-3/2D-3 

× exp {-½(IQ-Kol/D) z} (19) 

where D is the characteristic width of the diffuse peak 
in reciprocal space. In general the diffuse peak will not 
be isotropic and a simple anisotropic distribution to 
consider is an ellipsoidal peak. This choice fits our 
experimental data on Cu-Mn quite well. 

The cross section can then be written 

da 
ct-~ (Q - Ko) = Ao(2Zc)- 3/Z(Dx,Dy,Dz,) -1 

x exp{-½[[dXx']  z [dX"]z+{dX~']Zl~ (20) 
L\-D~-x, ] + \ Dy, / \ Dz, ] JJ 

where AX = Q - K o  and Dx,, Dy,, D~, are the character- 
istic widths of the diffuse peak in the x'. y ' ,z '  direc- 
tions. 

Case 1: Diffuse scattering from a mosaic single crystal 
In order to calculate the observed intensity for the 

scattering cross section of equation (20), the single- 
crystal resolution function of equation (12) must be 
written in terms of coordinates coinciding with the 
symmetry of this cross section. After performing this 
coordinate transformation the intensity can be cal- 
culated from equation (9) and the result is 

q~°A°(2zO-3/2 {_½3,~t=CktAq;,Aq~} 
I~(Aq)= ax,Dy,D~, Co exp 

(21) 

where Aq = Q 0 -  K0 and Aq£, z, 3 = Aqx,, r',z'. The ex- 
pressions for the coefficient Co and the matrix Ck~ are 
given in Appendix B. 
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This result is the expression for the intensity of 
neutrons scattered from a single-crystal diffuse peak as 
a function of Qo-Ko where Q0 is the nominal setting 
of the diffractometer and Ko is the wave vector corre- 
sponding to the center of the diffuse-scattering cross 
section in the central mosaic grain. It can be seen from 
the expressions for the coefficients given in Appendix 
B that the measured intensity depends on the extent 
of the diffuse peak relative to the extent of the resolu- 
tion function. If we consider the usual case where the 
extent of the resolution function in Q space is small 
compared with the diffuse peak, then the elements of 
the matrix Ck~ reduce to 

C~t=(D.,,,)-2 

C;z=(Dy,) -z (22) 

G 3  = ( O , , )  - 2  

C~z=O 

and the coefficient Co reduces to 

Co=(2rc)3/ZRo[M33(M'22M~l- M~Z2)] -x/z. (23) 

This means that the expression of equation (21) 
reduces to 

I~(Q0- K0)= ~ooCo do" dO (Qo-  Ko). (24) 

This same result can be arrived at in a conceptually 
simpler way directly from equation (9) which for this 
case is written as 

l I t (Q°-K°)=rP° dO (Q-K°)R~t(Q-Q°)d3Q" (25) 

The assumption that the extent of the resolution func- 
tion is small compared with the diffuse peak is the 
same as the assumption that over the region of Q 
space where R~t(Q-Qo) has appreciable values, 
do"/dO(Q-Ko) is essentially constant. Therefore we 
can write equation (25) as 

I I£(Q°-K°)=O)°dO (Qo-K0) R~t(Q-Qo)d3Q (26) 

and performing the integration over the resolution 
function gives 

The parameters are defined in Table 1. We can immedi- 
ately see that Co is independent of the scattering angle, 
20s. The interpretation of equation (27) is then that 
the intensity is directly proportional to the cross sec- 
tion of the diffuse peak at each point in Q space and 
there is no dependence of the intensity on scattering 
angle, i.e. the Lorentz factor, L~, is 1 as anticipated 
in equation (1). It can also be seen that in the deriva- 
tion of equation (27) there is no assumption about the 
shape of the diffuse peak other than it be much larger 
than the resolution function, i.e. the shape could be 
Gaussian, Lorentzian, or anything else. Also we can 
see that Co is independent of the mosaic spread of the 
sample. 

Of course, as we have seen in Fig. 2 the resolution 
function broadens as Q increases or as 20s increases. 
Therefore, the assumption that the resolution function 
is small compared with the diffuse peak may only hold 
for small values of 20s even with fairly tight collima- 
tion. The intensity must then be calculated from the 
expression of equation (21). The peak intensity of the 
diffuse scattering is simply 

do" 
It(Aq = 0) = ~0oCo d£2 (Aq = 0) (29) 

and so the more general Lorentz factor for the peak is 
simply 

L °  = C o / C o  . (30) 

As can be seen from the expression for Co given in 
Appendix B the value of L ° depends upon the relative 
shapes of the resolution function and the diffuse peak. 
For a spherical diffuse peak the intensity falls off with 
20s as shown in Fig. 4 for different values of the detec- 
tor collimation constant ez. However, since the resolu- 
tion function rotates as well as broadens as 20s in- 
creases, for a nonspherical diffuse peak, the Lorentz 
factor depends upon the direction of Q as well as its 
magnitude. That is, the intensity varies differently for 
different directions of scans through the nonspherical 
diffuse peaks. An example is shown in Fig. 5 where L1 
is plotted for three different shapes of diffuse peaks 

d o .  
I~(Qo- K0) = ~0 cl~':} (Qo-  Ko) (2rc)3/2Ro ,.o 

[ M~3( M~2M~ - M~Z)]- u z -  q~oCo do. - d o ( Q ° - K ° )  (27) ~ 0.9 

z 0.8 
which is the same result as that obtained in equation 
(24). The term Co, which is simply the integral of the o 0.7 
single-crystal resolution function over all Q space, is, 
of course, independent of any coordinate transforma- 
tion. By substituting the expressions for Ro and M£t 
from equations (13) and (14) and using the relations 
given in Appendix A we have 

Co = (2:rr.)S/ZnoPoPiP2klaq,,,4oqfllO~zfl2 ctn 0M. (28) 

a2= . l .  
a 2 --.50 

a 2 = I • 

I I I I I I I I I 
0 I0 20 50 40 50 60 70 80 90 

28s(deg) 

Fig. 4. The Lorentz factor L ° for a spherical diffuse peak of 
size D = 0.1 (2n/a0) for different values of ~2. 
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and for two different scans. In some cases it can be 
seen that the intensity actually increases with 20s for 
certain ranges of 20s. In the examples the axes of the 
diffuse peaks are chosen parallel to the axes of the 
reciprocal lattice. 

Case 2: Diffuse scattering from a polycrystal 
From equations (16) and (9) the intensity is given by 

I2(Q°)=mofP° f da ~-~ (Q)R~(Q-  Qo)daQ (31) 

where rnD is the multiplicity for the diffuse peak. For 
simplicity let us use the isotropic cross section of 
equation (19). Then we have 

m oq)oAo noRo 
12(0o)- (2zc)3/ZD3 2K2(MzzM33)l/z 

x f exp { - ½  [(AzZ~ + AX2+ AZ2z)ID 2 

+ (Mlt-M~22!M~2] J }d3Q AQ~ ] (32) 

1.0 u 
t~ 

0.9- -  

z 0 .8 - -  
n- 
O, 

0 . 7 -  

I 2 3 

- - - - - -  ~ ,  
2 

2 

- - - - - - .  [ h , o ]  _ 

2 4 - h  
I I I I I I I I I 

0 I0 20 30 40 50 60 70 80 90 

20 s (deg) 

(a) 

0.9 - 
o 

0 . 8 -  

~O.7 - 
B 

k [////_ 
2 , [hhO]  ~ 5 

2 ~, =h 
I I I I I I I I I 

0 I0 20 50 40 50 60 70 80 90 

20s(deg)  

(b) 

Fig.  5. (a)  T h e  L o r e n t z  f a c t o r  L ° f o r  a scan  a l o n g  [hl0] ,  a n d  
(b) L ° for a scan along [hh0] both for three different shape 
diffuse peaks and for ~2= 1 °. The diffuse peaks are dimen- 
sioned in units of (2rc/ao). 

where again AX= Q-Ko .  The integration can then be 
performed yielding 

m D~ooA o noRo 

 1]}1 ..... 

1 ........... )l~z~_. i_) ] }. × exp{_½[(_A_q_~_)2(1 ..... 1 ..... ( - 1 Y + M l l  Mzz] 

(33) 

where Aqx=lQo-Kolx. Again, as in the single-crystal 
case, we see that the intensity depends on the extent of 
the diffuse peak relative to the resolution function. If 
the resolution ellipsoid is small compared with the 
diffuse peak the intensity is given by 

m oq)oA o 
l~(Aq:,)= (2zO3/Z2DKoZ Co exp {-½(Aqx/D) z} (34) 

o r  

where 

D 2 da 
12(Aqx) = mD~oo ~ Co ~ (Aqx) (35) 

Co = [M33Mzzi°;i(12rc)3/MMi: )]1/2" (36) 

This expression for Co is equivalent to that given by 
equation (23), and therefore independent of 20s, 
since we have shown in equation (28) that Co is 
independent of the mosaic spread of the sample. 

The intensity, I~(Aqx), is therefore directly propor- 
tional to the variation of the cross section in the x 
direction; however, there is a dependence on scattering 
angle due to the term 1/Ko z and equation (35) can be 
rewritten as 

D 2 dcr 1 (37) 
I2(Aqx)=mD~°°C° 8k, 2 dO (Aqx) sin20s" 

Therefore 
1 

L 2 -  sin2 0s (38) 

as anticipated in equation (2). 

Brags scattering 
In order to put the diffuse scattering on an absolute 
scale it is necessary to derive expressions for the Brags 
reflections using the same mathematical formalism as 
in the previous section. For a Brags reflection the cross 
section for elastic scattering is given by 

dcr 
dg2 (Q)= Bo6(Q- Go) (39) 

where Go is a reciprocal lattice vector and Bo=Ao/fo. 
We are assuming that extinction is negligible. Equa- 
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tion (9) can now be written 

I(Q°-G°)=~°°B° I fi(Q-G°)R'(Q-Q°)d3Q 

= ~00BoR'(Qo- G0) • (40) 

Case 3" Bragg scattering from a mosaic single crystal 
We can now write this result directly as 

I3(Qo-Go)=q~oBoR'M(Qo-Go) . (41) 

This is the intensity of a single-crystal Bragg reflection 
for a setting of the crystal and diffractometer corre- 
sponding to Qo-Go=Aq.  Any scan in Q space along 
a linear path Aq is Gaussian and the variation in width 
of the Gaussian scans can be seen directly from the 
shape of the constant contours of the function R~(Aq) 
as shown in Fig. 2. 

If the crystal is rotated through the reflecting posi- 
tion, the integrated intensity can be readily obtained 
from equations (41) and (12) as 

Aqy (42) J 3 =  I Isd°9=~°°B°R° I exp {-½M~z(Aqy) z} Go 

since Aqx=Aq==O, and therefore 

j 3  = ~ooBoRo [ 2zc ]1/2 
Go -\M~_~/ " (43) 

The term 'integrated intensity', however, is usually 
applied to the special case where the detector is suffi- 
ciently wide open to accept all of the Bragg scattered 
neutrons at each angular setting of the crystal. This is 
equivalent to the condition that ~2 and flz become large. 
In this case the expression of equation (43) simplifies 

to o¢~=C3L~, (44) 

where 

and 
C3 = (OonoBoPoPiP2(2rc)3/2oqflxrlM ctn 0M (45) 

1 
L ; -  (46) 

sin 20~ 

~ 4  

~ s  
z 

o, 2 

6(a). As can be seen L3 varies most rapidly with 20s 
for tight collimation and gradually approaches the 
limiting value of 1/sin 20~ as the collimation is relaxed. 

The intensity at the peak of the Bragg reflection 
(Q0=G0) from equation (41) is simply 

I3( aq = O) = q~oBoRo . (48) 

As a2 and f12 become large this value approaches a 
limit given by 

1 
13(aq = 0) = (2re)-1/2C 3 sin 20, 

2 ( tan  Os 1)z~+tanZOsr/Mz] - 
x [q~,, + \ ian OM- -- tan 20M 

1/2 

(49) 

Thus, in this limit, it is seen that the peak intensity 
varies as 1/sin 20s modified by a term which is a func- 
tion of the resolution parameters. We can write the 
general expression for the peak intensity from equa- 
tion (48) as 

13(Aq = 0) : (2re)- ~/2 C3LO. (50) 

0 
0 

This expression, as expected, is independent of the 
mosaic spread of the sample. The Lorentz factor, L~, ~ooo 
is the same as anticipated in equation (3).* 

If now the more general expression for the integrated ~, aoo 
intensity, as given in equation (43), is written as J a  = 
CaL3 then the more general Lorentz factor is given by N 6 0 0  

~ooBoRo ( 2 r e )  I/2 

....... Go M;2 o 400 
L 3 =  ( 4 7 )  C3 

This quantity is plotted as a function of 20s for various zoo 
values of the detector collimation constant a2 in Fig. 

* Equat ion  (44) differs in form f rom the usual equat ion for 
integrated intensity which is writ ten in terms of  the neut ron  
flux incident on the sample, I0, instead of  the neut ron  flux in- 
cident on the m o n o c h r o m a t o r .  In the present notat ion,  
Io = ~00k]~fl~r/M ctn 0M so that the integrated intensity in terms 
of  I0 is wri t ten ,.¢~ = lonoBoP,/k] sin 20s, a more  familiar form. 

I 12. 3 4 
t:l 2 ¢o .,5 ° .I o 

I l I I I I I I 14 
I0 20  5 0  4 0  5 0  6 0  7 0  8 0  9 0  

2 0  s ( d e g )  

(a) 

I 2 

I I I I I I I I 
Io 2o ao 40 50 60 7o so so 

20s(deg) 
(b) 

Fig. 6. (a) The Lorentz  factor  L3, and (b) The Lorentz  factor  
L ° both as a funct ion of  20s for four  values of  ~2 and with 
~2 ~ O<3, 



M. YESSIK,  S. A. W E R N E R  A N D  H. SATO 379 

The factor L ° is shown in Fig. 6(b) for several values 
of c~z. As can be seen, L ° varies most rapidly with 20~ 
for tight detector collimation and approaches the 
limiting value of equation (49) as the collimation is 
relaxed. 

Case 4: Bragg scattering from a polyerystal 
From equations (40) and (16) this result can be 

written directly as 

I4(Aq~) = mn~OonoBoR~,(A qx) , (51) 

where rnB is the multiplicity of the Bragg reflection. 
The intensity at the peak of the Bragg reflection is 

simply 

I4(Aqx=O) = mB~oonoRo (52) 
2G~(MzzM3a),/z • 

When the horizontal aperture of the detector is wide 
enough to accept the entire width of the Debye- 
Scherrer ring, i.e. as a2 becomes very large, then equa- 
tion (52) simplifies to 

where 

and 

I4(Aqx=O)=C4 L°' (53) 

C4-  mBflz (2rc)_~/2C 3 (54) 
4 

1 

L° '=  sin 0~ sin 20s " (55) 

In the more general case of equation (52) we have 

LO = I4(Aqx=O) noBoRo / 
c4 = 2a~(M2~M~).~ C4. (56) 

/ 

This expression is plotted in Fig 7 for several values of 
e2. It can be seen that L ° varies most rapidly with 20s 
for tight collimation and gradually approaches the 
limiting value of 1/sin 0s sin 20s as a2 increases. 

The expression for the integrated polycrystalline 

2 5  

2 0  

t~ 
o 

E5 

N 

N Jo 
o, 

0 I0 

// I 
I* .5* .1" l " 

3/~,,. ~ s,No~mzo~ , 
4 2 

20 30 40 50 60 70 80 90 
2 0  s (deg) 

Fig. 7. The Lorentz  fac tor  L] as a funct ion  of  20s for  four  
values of  e2. 

intensity can be readily obtained from equations (51) 
and (16) as 

J~4= I I4(Aqx)d(ZOs) ms~oonoBoRo 
= -2GZo(M22M3a)l/2 

x l e x p { _ _ } ( M n _  M22) _21 Aqx 
- ~ 2 2 / A t l x l  2k  I c o s  0 s 

(57) 

since Aqx=k,  cos O~A(20~). Performing the integration 
yields 

~ig4 = C4L4 (58) 
where 

and 

C4= (2rc)'/2o~2C 4 

m BO~ 2 fl2 
- 4 (73 (59) 

1 

L4 = sin 0s sin 20s " (60) 

This expression is now completely general, i.e. no~,as - 
sumptions have been made concerning the size of the 
collimation parameters. Thus the Lorentz lactor for the 
integrated polycrystalline intensity is 1/sin 0s sin20,, as 
anticipated in equation (4), independent of the instru- 
mental resolution. 

In the case where the detector collimation is relaxed, 
i.e. the assumption of equation (53), there is a very 
simple relation between the integrated intensity and 
the peak intensity, namely 

~4 
- (2zr)l/2a2. (61) 

I4(Aqx=0) 
We can also make an absolute comparison between 
the single-crystal intensity and the polycrystal inten- 
sity from the above expressions. For example, the 
ratio of the integrated intensities for a given reflection 
when a2 and ,82 are large and the samples are the same 
size is simply 

J4 mB~& 
- - -  ( 6 2 )  

J~  4 sin 0~ " 

D i s c u s s i o n  

An interesting comparison can be made between the 
ratios of the peak intensities of a diffuse peak to a 
Bragg peak in a polycrystal and in a single crystal. 
This ratio in a single crystal is given by (I1/Ia) at Aq = 0 
and in a polycrystal by (12/14) at Aqx=O. These ratios 
can be taken exactly using equations (21), (33), (41), 
and (51). However we will assume that the detector 
accepts all of the Bragg scattered intensity and that 
the extent of the resolution function is small compared 
with the diffuse peak. This assumption can be very 
nearly true in an experimental situation and is gener- 
ally close enough to true to give us the relation for 
which we are looking. With this assumption then a 
comparison of the two ratios is written as 

A C 2 9 A  - 5 
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oea  
Bragg peak )slngle (I;/I;)a:=o mn 2 f12 

- ( dierus~ peak ] = (G/I4)a~x=0 = -mz) -2-sG-0-s 
\ -B~-gg p ~-a I~/poly 

[ itan0  tan 0. 
x Y/,~h + \tan0M -tan20~ 

where 20s is the scattering angle for the Bragg peak. 
We have made the additional assumption that the 

diffuse peak is isotropic about some point in reciprocal 
space. The order of magnitude of this ratio can be seen 
using typical values of f12 ~- ½o, sin Os ~_ ½o, Ko ~- 2n/ao, 
the term in brackets in equation (63) _~½o, and a 
value of D~0"l(2g/a0) which is appropriate for the 
Cu-Mn alloy to be discussed later. Then the ratio is 
of the order of 0.01. This means that the ratio o f  the 
peak intensities o f  a diffuse peak to a Bragg peak in a 
single crystal is o f  the order o f  lO0 times smaller than the 
same ratio in a polycrystal. Although this ratio is very 
sensitive to the particular values of the resolution 
parameters and also to the width of the diffuse scat- 
tering, the general conclusion can be made for most 
situations that in an experiment on a polycrystal the 
diffuse peaks are very prominent in comparison with the 
Bragg peaks, whereas in a single-crystal experiment 
these same diffuse peaks are very weak in comparison 
with the Bragg peaks. Another way of looking at this is 
to examine the ratios of the peak intensities in a poly- 
crystal and a single crystal for both Bragg and diffuse 
peaks. In other words the ratios (12/11) and (14/13). 

With the same assumptions we have 

(Bragg peak)pow I~(Aq,,=O) mBflgl . . . .  - ~_ 10- 4 (64) 
(Bragg peak)s,n~le I;(zlq = 0) 4 sin 0, 

where r/is the term in brackets in equation (63), and 

(diffuse peak),,o,y I~_(Aqx = O) moD 2 
(diffuse peak)si,,g,e- I£(Aq=O) . . . . . . .  2K0 -~- ~ 10-2" (65) 

This expression shows that the relative intensity ob- 
served for a diffuse peak in a polycrystal to a diffuse 
peak in a single crystal depends mainly on the extent 
of the diffuse peak. 

Example 

As an example of the application of the above results, 
we shall discuss a study made on both single and poly- 
crystalline samples of Cu-rich Cu-Mn alloys which 
exhibit short-range atomic ordering (Sato, Werner & 
Yessik, 1972). In particular we shall discuss here the 
results for well annealed samples of 25 at.% Mn. The 
measurements on both poly- and single-crystal samples 
were made on the same spectrometer under identical 
resolution conditions. The experimental values of the 
parameters involved are given in Table 1. 

The results of a polycrystalline scan show a broad 
diffuse peak at a position corresponding to {½10}, 
similar to that first reported by Meneghetti & Sidhu 

(1957). The position of this peak is consistent with a 
short-range ordering of the M =  1 type long-period 
superstructure (Sato & Toth, 1965). The results of a 
single-crystal scan along the [hl0] direction are shown 
in Fig. 8 and it can be seen that diffuse peaks occur at 

the positions ~10  where n is an odd integer. Since 

these peaks all have the same scattering amplitude, the 
decrease of intensity from ½10 to ~10 is due to: (1) the 
Lorentz factor, (2) the temperature factor, and (3) a 
possible magnetic contribution from the short-range 
ordering of the moments on the Mn atoms. The shape 
of the diffuse peak was determined by a series of scans 
through the peak centered at ½10 and is shown in Fig. 9. 
This measured shape was approximated by an ellipsoid 
and the Lorentz factor for the peak intensities was cal- 
culated directly from equation (30). This Lorentz 
factor is shown in Fig. 10 normalized to the value at 
the ~10 position. The temperature factor was esti- 
mated as a weighted average of the pure Cu and pure Mn 
Debye model values, and the combined Lorentz and 
temperature factors are also shown in Fig. 10 nor- 
malized to the value at the -~10 position. It can be seen 

Cu 25% Mn (020)~ l(z2o) 1(420) 

. .  =__~_ c___~ 

1500 1 k 
" "  0 h (260) (4(~)0) --~ e ,  

T . .  • 

 ooof..." " . .  ! "  . • . . .  " . . . "  t • t " . . . .  A %e oo, C 0000%0 .00 D 

I I I 
0 1.0 2.0 3.0 

h [-~1 

4.0 

Fig. 8. Neutron intensity along the line [hl0] for a single crystal 
of Cu-25 at. % Mn. 
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Fig. 9. Constant intensity contours for the ½10 diffuse peak 
in the xy plane of reciprocal space. 
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that these two factors alone do not account for the 
entire intensity change. Therefore, it appears that there 
is a magnetic contribution to the diffuse peaks whose 
magnitude, estimated from the plots of Fig. 10, is 
approximately 20% of the nuclear scattering at the 
½10 position. Owing to the strong angular dependence 
of the magnetic scattering, it can be safely assumed 
that the intensity at 710 is essentially all nuclear. 

A similar conclusion about the magnitude of the 
magnetic contribution has been made in a recent 
study on these alloys by Wells & Smith (1971). How- 
ever, they did not take into account the angular 
dependence of the resolution correction (which in our 
case was about 5% in going from ½10 to ~10, and 
therefore the precise nature of the magnetic correla- 
tions remains unknown. 

In addition, it was found desirable to make a direct 
comparison of the single and polycrystalline peaks in 
order to ensure that all of the diffuse scattering seen in 
the polycrystalline scan actually corresponds to the 
½10 single-crystal peak. This comparison was made by 
normalization to a Bragg peak. The Bragg peak con- 
sidered was the 200 peak for which mB= 6 and 0~= 
16.85 ° , and the peak intensities were calculated using 
equations (48) and (52). The ½10 diffuse peak for which 
m ,  = 24 was considered to be ellipsoidal with character- 
istic widths D,,=0.14, Dy,=0.095, and D,,=0.095 in 
units of 2rc/ao. The peak intensities were calculated 
using equation (21) for the single crystal and the ex- 
pression for an ellipsoidal diffuse peak in a polycrystal 
(not shown here explicitly). The expected ratio thus 
calculated of normalized single-crystal diffuse peak to 
normalized polycrystal diffuse peak is given by 

(I~/I3)Aq=O 
(I2/I4)Aq~=O) =2.23 x 10 -3. (66) 
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Fig. 10. The contributions of the Lorentz factor, temperature 
factor, and magnetic form factor to the decrease in intensity 
of the peaks of the diffuse scattering along the line [hl0]. 
The experimental intensities are denoted by l¢~p, the Lorentz 
factor by L, and the combined Lorentz and temperature 
factors by Lx T. The difference between the curves I¢~p and 
L x T is attributed to magnetic scattering. 

The actual experimental values obtained for a 400K 
monitor count are as follows" 

I(½10)s~,s~= 1350 I(200)s~,gx~= 1.98 x 10  6 (67) 

I(½10)po,y = 360 I ( 2 0 0 ) p o l y  = 1550 

and thus the experimental ratio is 2.94× 10 -3 . This 
agreement is considered quite good, especially since 
no correction has been made for extinction in the single- 
crystal Bragg peak and confirms that all of the poly- 
crystalline diffuse peak is accounted for by the ½10 
single-crystal peak. It also confirms the analytical 
result that a diffuse peak is much smaller relative to a 
Bragg peak in a single crystal than in a polycrystal. 

APPENDIX A 
Coeff ic ients  o f  the resolut ion funct ion for 

re laxed in-pile col l imat ion 

The coefficient Ro is given by 

7cPoeiP2 
Ro = b2kl 2 V ~  t " (A 1) 

This expression differs from that given by Cooper & 
Nathans [equation (19), 1968b] by a factor 1/bZkl z 
since the form of the scattering cross section used by 
them differs from the one used here. 

The elements of the matrix Mk~ are given by 

m l  1 2 2 2 t = s l - s o s l / A  

M~2=sxs2-(SoSO (SOS2 +PoPz)/A' (A2) 
M 2 2  2 2 = s 2 + P 2 -  (sos2 +poP2)2/A ' 
M33 = 1/(~2p~+/q2/~ 2 ) 

where 

t a t ?  1 s0 = 1 -  -b-tan 0M 1r/~t ro-- kI~l 

(2-~) 1 s l = -  tan OM/kI~IM Po-- ki~2 

(A3) 
a 1 1 

sz= ~ tan OM/kxrl~ Pz b kio~z 
and 

A'=So~+ro~+? 2 

A = 1/k2fl~ + 1/k~fl~. (A4) 

Since the vertical resolution is assumed to be inde- 
pendent of the horizontal resolution then 

Mk3=M3z=0 for k , l # 3 .  

The definitions of the parameters involved in these 
equations are given in Table 1. 

In order to perform an experiment on a Cu-25 at. % 
Mn sample, to be described more fully later, particular 
values of the instrumental parameters were chosen. 
The parameters r/M and ~1 were obtained from a series 
of rocking curves on a perfect Si crystal. The param- 

A C 29A - 5* 
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eter fit was obtained by measuring the intensity as a 
function of tilt angle in the parallel position. The collim- C22 - 
mation parameters for the detector, ~2 and/?2, were 
obtained from the collimator geometry. The para- 
eter r/$h was obtained from a rocking curve of the [ 
sample crystal in the parallel position, and r/sv was l l  + 
assumed equal to rhn. The values of these parameters x 
are shown in Table 1. 

APPENDIX B 

Coefficients of  the intensity equation for diffuse 
scattering from a mosaic single crystal 

The coefficient Co is given by 

Co=(2n)3/ZRo 3 + --2Dz, z + Dy, 

x ( N ; t -  Ni2 1 ) -  
........................ 1 ....... + - ~ z ,  
N2z + 2 

D v , 

and the matrix Ck~ is given by 

G , -  
1 1 

DZ~, D~, 

1 
C 1 2  ~ - 2 

D x , 

t/2 

1 

+N; t - -  1 ) 
(--bl~i .... N;2 2 

• N~2 + . . . . .  
/ 

D~, 

. ,  1 ,/ 
1 N2z + --n2-- 

DYz' ( ..... 12 Dx, + N;, ........ N,2.f ) 

N22 + D2 ' 

(BI) 

(B2) 

1 1 
DE, D~, 

1 

(N 2+ 
N;2z 

1 1 
32,, ] 1) 

1 Naa 

The Nkz are the transformed Mkz values, i.e. 

N'  = T M ' T  -: t  (B3) 

where T is the transformation matrix. 
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Starting from a restricted set of numerical and symbolic phase angles, the tangent formula is applied 
iteratively to determine numerical and symbolic phase indications for the other reflexions. Numerical 
values are then systematically substituted for the symbols to determine which combinations are most 
likely to yield the solution. 

Introduction 

While for centrosymmetric structures automatic com- 
puter programs using symbolic methods have been 
widely successful (Germain & Woolfson, 1968; Ah- 
reed, 1970; Bednowitz, 1970; Dewar, 1970; Stewart, 
1970), the symbolic approach for non-centrosymmetric 

structures has usually been restricted to use of the sum- 
of-angles formula in the early stages to determine likely 
numerical values of the symbols, after which further 
phasing is completed by numerical tangent refinement 
(Karle & Karle, 1966; Schenk, 1971; Dewar, 1970). 
Ideally this process leads to a single solution. 

The program S Y M T A N  described here differs from 


